Simultaneous Localization and Mapping pada Smart Automated Guided Vehicle menggunakan Iterative Closest Point berbasis K-Means Clustering

نویسندگان

چکیده

ABSTRAKAutomated Guided Vehicle (AGV) merupakan salah satu jenis mobile robot yang digunakan untuk mengangkut barang menuju tempat tujuan. AGV mampu bekerja pada lingkungan dinamis tanpa menggunakan garis pemandu. Namun sebelumnya harus mempunyai informasi cukup terhadap kerjanya. Teknik ini dikenal dengan Simulataneous Localization and Mapping (SLAM) menggambar peta sekaligus mengetahui posisi di dalam peta. Pada penelitian ini, metode yaitu SLAM berbasis Iterative Closest Point (ICP) algoritma K-Means kumpulan titik dari sensor laser range finder (LRF) membangun lingkungan. Pemetaan memiliki error hasil scan jarak 77,69% lebih kecil dan waktu eksekusi 0,18% cepat dibandingkan KD-Tree. Peta dihasilkan KMeans ICP-SLAM memberikan baik & mendekati keadaan ruangan sebenarnya KD-Tree.Kata kunci: ICP-SLAM, K-Means, Laser Range Finder. ABSTRACTAutomated is a type of that used to transport goods destination. able work in dynamic environment without guidelines. However, it must have sufficient information about its working beforehand. This technique known as Simultaneous which by be draw map well determine position on the map. In this research, method based with algorithm uses collection points from Finder build an environmental using has smaller distance faster execution time than The generated gives better results closer actual state Keywords:

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automated Trimmed Iterative Closest Point Algorithm

A novel method for automatic registration based on Iterative Closest Point (ICP) approach is proposed. This method uses geometric bounding containers to evaluate the optimum overlap rate of the data and model point sets.

متن کامل

Morphological Iterative Closest Point Algorithm

This work presents a method for the registration of three-dimensional (3-D) shapes. The method is based on the iterative closest point (ICP) algorithm and improves it through the use of a 3-D volume containing the shapes to be registered. The Voronoi diagram of the "model" shape points is first constructed in the volume. Then this is used for the calculation of the closest point operator. This ...

متن کامل

Multidimensi Pada Data Warehouse Dengan Menggunakan Rumus Kombinasi

Multidimensional in data warehouse is a compulsion and become the most important for information delivery, without multidimensional data warehouse is incomplete. Multidimensional give the able to analyze business measurement in many different ways. Multidimensional is also synonymous with online analytical processing (OLAP).

متن کامل

Validasi data dengan menggunakan objek lookup pada borland delphi 7.0

s: Developing an application with some tables must concern the validation of input (scpecially in Table Child). In order to maximize the accuracy and input data validation. Its called lookup (took data from other dataset). There are 2 (two) ways to lookup data from Table Parent: 1) Using Objects (DBLookupComboBox & DBLookupListBox), or 2) Arranging The Properties Of Fields Data Type (shown by u...

متن کامل

Towards K-means-friendly Spaces: Simultaneous Deep Learning and Clustering

Most learning approaches treat dimensionality reduction (DR) and clustering separately (i.e., sequentially), but recent research has shown that optimizing the two tasks jointly can substantially improve the performance of both. The premise behind the latter genre is that the data samples are obtained via linear transformation of latent representations that are easy to cluster; but in practice, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Elkomika

سال: 2022

ISSN: ['2338-8323', '2459-9638']

DOI: https://doi.org/10.26760/elkomika.v10i4.742